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Theory of Microcubes 

H i r o k a z u  N i s h i m u r a  1 

Received October 17, 1996 

Kock and Lavendhomme have begun to couch the standard theory of iterated 
tangents within the due framework of synthetic differential geometry. Generalizing 
their theory of microsquares, we give a general theory of microcubes, its three- 
dimensional generalization, in which an unexpected generalization of the Jacobi 
identity of vector fields with respect to Lie brackets and a synthetic treatment 
of Bianchi's first identity are discussed. 

INTRODUCTION 

In order to get a unified theory of physics in which relativity and quantum 
theory are concordant with each other, we must quantize geometry or the 
pure science of space. To this end, we must choose the right geometry to be 
quantized, and we believe that it is not standard differential geometry and 
the category of smooth manifolds, but synthetic differential geometry and 
the category of microlinear spaces that are truly susceptible of quantization. 
For textbooks on synthetic differential geometry and microlinear space in 
particular, the reader is referred to Lavendhomme (1996) and Moerdijk and 
Reyes (1991). For the first attempt to quantize synthetic differential geometry, 
the reader is referred to Nishimura (1996a,b). Some treatments of Hamiltonian 
and Lagrangian mechanics within the framework of synthetic differential 
geometry can be seen in Nishimura (1997, n.d.-a,b). 

The theory of iterated tangents such as seen in White (1982) and Yano 
and Ishihara (1973), which deals somewhat clumsily with higher order struc- 
tures of infinitesimals without explicitly referring to them, should be regarded 
as a precursor of synthetic differential geometry. Its basic ideas still remain 
to be couched within the framework of synthetic differential geometry, in 
which various kinds of infinitesimals are generously available. The first 
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attempt in this direction was tried by Kock and Lavendhomme (1984), who 
discussed strong differences of microsquares and applied them to Lie brackets 
of vector fields and affine connections. This paper develops three-dimensional 
generalizations of their two-dimensional ideas, paving the way to still higher 
dimensional generalizations. The paper consists of six sections, the first three 
culminating in an interesting generalization of the Jacobi identity of vector 
fields with respect to Lie brackets (Theorem 3.1), while the last three 
are organized toward a synthetic treatment of Bianchi's first identity 
(Theorem 6.4). 

Let M be a microlinear space with rn e M. These entities shall be 
fixed throughout this paper. We assume the reader is well familiar with 
Lavendhomme's (1996) readable textbook on synthetic differential geometry 
up to Chapter 5, though we could not resist the temptation to use some of 
our own notation and terminology. As is usual in synthetic differential geome- 
try, the reader should presume that we are working in a topos, so that the 
principle of excluded middle and Zorn's lemma should be avoided. But for 
these two points, we could feel that we are working in the standard universe 
of sets. 

It is well known in synthetic differential geometry that the set T~(M; m) 
of tangent vectors at m is an R-module, where R is intended as the set of 
real numbers containing plenty of infinitesimals and abiding by the so-called 
general Kock axiom. Given tl . . . . .  tn E "l'l(M; m), there exists a unique 
function l(tl,...,tn): D(n) ---) M such that 

l(tl,.,.,tn ) ~ i (i = 1 . . . . .  n) 

where,i  is the ith canonical injection of D into D(n). The sum tl + "'" + 
tn is then given as follows: 

(0.1) (tl + "'" + t,)(d) = l(q,.,,t,)(d . . . . .  d) for any d ~ D. 

Kock and Lavendhomme (1984) studied the set TZ(M; m) of micros- 
quares at m by introducing the notion of strong difference --'. Given Ctl, az 
E T2(M; m), their strong difference a2 -" a~ is defined, so long as they 
coincide on the axes, in which a2 -" a~ lies in "II(M; m). Identifying the set 
• of vector fields on M with the tangent space TI(MM; idM) of M M at 
the identity transformation idM of M, they could express the Lie bracket [X, 
Y] of X, Y ~ • in terms of strong difference in "I'2(MM; idM). However, 
they stopped at this point without noticing that this may lead to a new 
synthetic proof of the Jacobi identity of vector fields. Section 1 is devoted 
to a brief review on some of their story. 

Our story begins exactly where they stopped. We remark that, just as 
the space T2(MM; idM) provided a good framework for discussing the Lie 
bracket [X, Y] of vector fields X and Y on M, the space "I'3(MM; idM) of 
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microcubes on M M at idM provides a good framework for discussing combina- 
tions of three vector fields X, Y, and Z on M by Lie brackets such as [X, [Y, 
Z]]. The so-called Jacobi identity claims precisely that the sum of the three 
vector fields obtained from [X, [Y, Z]] by cyclically permuting among X, Y, 
and Z vanishes. In Section 2 we study the space T3(M; m) of microcubes on 
M at rn by introducing three kinds of strong difference, to be denoted by -i-, 
2 ,  and 3 ,  which correspond to three different ways of viewing microcubes 
on M as microsquares on M ~ The interactions of the three strong differences 
make the theory of microcubes more than a prosaic variant of the theory of 
microsquares, just as the interactions of addition and multiplication make the 
theory of rings something more than the theory of groups or the theory of 
monoids. Such combinations of three vector fields X, Y, and Z on M by Lie 
brackets as [X, [Y, Z]] are shown to be expressible in terms of the three 
strong differences l ,  ~-, and 3 in T3(MM; idM) and the strong difference "- 
in "I'2(MM; idu). 

Section 3 is devoted to the general Jacobi identity in T3(M; m), which 
is expressed in terms of the three strong differences l ,  2 ,  and 3 in T3(M; 
m) and the strong difference --" in T2(M; m). Since all four strong differences 
are partial operations, it is not always meaningful. However, whenever it is 
meaningful, it is logically forced to obtain. The classical Jacobi identity of 
vector fields is only an easy corollary of this far-reaching Jacobi identity for 
microcubes, or using a locution from orthodox Marxism, the former is the 
superstructure of the latter. It is our great surprise that the Jacobi identity 
should hold at such a deeper level. The proof of the general Jacobi identity 
requires construction of a quasi-colimit diagram of small objects, which is 
too gigantic for us to pass through in saying simply that, in order to see that 
it is indeed a quasi-colimit diagram of small objects, it suffices to try it in 
the case of M = R. Therefore we investigate the general Jacobi identity in 
full detail in the simple case of M = R before treating it generally, though 
we know well that the case of M = R requires no more than high school 
mathematics by dint of the general Kock axiom. We have chosen this route, 
because we would like to make the paper more than a fossil in the Bourbaki 
style. We believe that this choice will enable the reader to share our aspiration 
and excitement. 

Section 5 deals with another strong difference of microcubes. This 
section could be read just after Section 2, and Theorem 5.4 and its proof 
might prepare the reader for more advanced Theorem 3.1 and its proof. 
Section 6 can be regarded as a solution of White's (1982) Exercise 19 of 
Chapter 4 from a synthetic viewpoint. The proof, without making use of the 
Jacobi identity of vector fields, deepens our geometric comprehension of the 
first Bianchi identity. 
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Section 4 deals with a subject which is more general than the title of 
the paper suggests. It is concerned with a distinguishable class of small 
objects called simplicial objects. Since the main topic of the paper is not 
simplicial objects in general but microcubes, our exposition is kept to the 
point that is requisite for later sections. Therefore it is superficial, far from 
exhaustive. In Sections 4 and 6 a connection V in the sense of Lavendhomme 
(1996, w Definition 1) is supposed to exist on M. 

The rest of this section is devoted to miscellaneous remarks on notation 
and terminology. 

(1) Such standard notations for small objects as 1, D, D(2), and D 2 = 
D • D are used freely. 

(2) Given a small object E, the unique morphism 1 ---> E is generally 
denoted 0. 

(3) A diagram {Ex ~ F} of small objects is called a quasi-colimit 
diagram of  small objects if 

{R F R~ RE~} 

is a limit diagram, in which F is called the quasi-colimit of the diagram. 
(4) If there is a canonical injection of a small object E into a small 

object F, it is generally denoted by / .  
(5) The totality of n-microcubes on M at m is denoted by T~(M; m). 
(6) The set T~(M~t; idM) is denoted by xn(M). In particular, • is 

the set of vector fields on M. 
(7) Given X l . . . . .  X ~ ~ xI(M), we denote by X n * " .  * X 1 the element 

of x~(M) such that 

(0.2) (X n * . . .  * Xl)(dl . . . . .  dn ) = XL . . . .  o x l t  

for any (d I . . . . .  dn) E O n. 
(8) The group of permutations of the set {1 . . . . .  n} is denoted by 

~ermn.  Cycles are denoted (12), (123), etc. For example, (123) denotes the 
permutation of the set { 1 . . . . .  n } assigning 2 to 1, 3 to 2, and 1 to 3 while 
keeping the other elements fixed. Cycles of length 2 are called transpositions. 
It is well known that the group ~elcnln is generated by transpositions. 

(9) If {Dx - ~  D,} is a diagram of small objects, then the diagram 
perceived by R means the diagram 

{ROw R:,~> Rn~} 

This locution will appear in the proofs of Lemmas 3.3 and 5.5. 
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1. M I C R O S Q U A R E S  

This section is complete ly  a review, and the reader is referred to Lavend-  
h o m m e  (1996, w167 for details. 

Lemma 1.1. The diagram 

D(2) ' > D 2 

D 2 > D 2 v D 
qo 

is a quasi-colimit  d iagram of  small  objects,  where  

(1.1) 
(1.2) 
(1.3) 

D 2 v D = {(dl, d2, d3) E D3ldld3 = d2d 3 --- 0}. 
q~(dl, d2) = (dl, d2, 0) for  any (dl, d2) E D z. 
t~(dt, dE) = (dl, d2, dld2) for any (dl, d2) E D 2. 

The  above l e m m a  enables us to define the notion of  strong difference 
for microsquares  as follows: 

Proposition 1.2. For any Oil, ol. 2 E T2(M; m), i f  eq I 0(2) = ot2lo(2),  then 
there exists a unique function ~ ~1,~2): D2 v D --) M such that ~ (~,~2) ~ qo = 
0t 1 a n d  ~ (a i , a2 )  ~ qJ ---- Ot 2. In this case we define a tangent vector  or2 "-- ot 1 in 
TI(M; m) as follows: 

(1.4) (~2 "-- t~l)(d) = ~ t , ~ 2 ) ( 0 ,  0, d)  for  any d ~ D. 

Lemma 1.3. The diagram 

1 
0 

> D 

D 2 > D 2 v D 
qo 

is a quasi-col imit  d iagram of  small objects,  where  

(1.5) e(d)  = (0 ,0 ,  d)  f o r a n y d  ~ D. 

The  above  l e m m a  enables us to define the notion of  strong translation 
for  microsquares  as follows: 
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Proposition 1.4. For any t ~ Tl(M; m) and any ol e T2(M; m), there 
exists a unique function ,r 0 2 v D --> M such that ,4(t,,~ ) o e = t and/I(t,a) ~ 
q~ = or. In this case we define a microsquare t 4- ot in T2(M; m) as follows: 

(1.6) (t 4- ot)(dl, dz) = ,r d2, did2) for any (dl, d2) ~ D 2. 

Given o t e  TE(M; m), we define E(o0 e T2(M; m) as follows: 

(1.7) ~(ot)(dl, d2) = or(d2, dl) for any (dl, d2) e D 2. 

Proposition 1.5. For any oq, or2 e TE(M; m), if oq I D(2) = Or2[ D(2), then 

(1.8) ~ (a2)  --" ~(oq)  = a2 --" al  

The following result has inspired our study of the Jacobi identity within 
the context of microcubes. 

Proposition 1.6. For any X, Y ~ • the right-hand side of the 
following equality is meaningful and the equality holds: 

(1.9) [X,Y] = Y * X  " - E ( X *  Y) 

2. S T R O N G  D I F F E R E N C E S  IN M I C R O C U B E S  

The following lemma is a three-dimensional generalization of Lemma 
1.1. 

Lemma 2.1. The diagrams 

D[3; 2, 3] 
g" 

> D 3 

> D 3 y D  
% 

D[3; 1, 31 

D3 

i ) D 3 

> D 3 ~ D  
q)2 
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D[3; 1, 2] " ) 03 

il l0 
D 3 ) D 3 

q03 ~ D 

are quasi-colimit diagrams of  small objects, where 

(2.1) D[3; 1, 2] = D(2) • D = {(db d2, d3) ~ D31dld2 = 0} 
(2.2) D [ 3 ; 2 , 3 ]  = D • D(2) = {(dr, dE, d3) E D31d2d3 = 0} 
(2.3) 0 [3 ;  1, 3] = {(d~, d2, d3) e 031d~d3 = 0} 
(2.4) D 3 y D = {(dl, d2, d3, d4) E D41d2d4 = d3d4 = 0} 
(2.5)  D 3 y D = {(dl, d2, d3, d4) ~ D41dld4 = d3d4 = 0} 
(2.6) D 3 ~ D = {(dr, d2, d3, d4) E D41dld4 = d2d 4 = 0} 
(2.7)  r d2, d3) = r d2, d3) = qo3(dt, d2, d3) = (d2, d2, d3, 0)  

for any (dl, d2, d3) E D 3 
(2.8) Ol(di, dE, d3) -- (dr, dE, d3, d2d3) for  any (db dE, d3) E 0 3 
(2.9) t~2(dl, d2, d3) = (dl, d2, d3, dld3) for  any (dl, d2, d3) ~ D 3 

(2.10) t~3(dl, d2, d3) -- (dr, d2, d3, did2) for  any (dl, d2, d3) e D 3 

As we will see below, we have three kinds of  strong difference for 
microcubes.  

Proposition 2.2. (1) For any ~/t, '~/2 E T3(M; m), if ~/11013;2,3] = ~21D[3;2,3], 
1 o then there exists a unique function ~ v  ~ ): D3 Y D ---> M such that ~(v,.~2) 

- -  1 O �9 I '  2 _1 . 

qo~ - "/1 andg(~..v.) ~ = ~/2. In this case we define a mlcrosquare "/2 ~- ~/~ 
in T2(M; m) as follows: 

1 (2.11) ("/2 i-  ~h)(dl, d2) = ~(v~,-19(dl, 0, 0, d2) for any (dl, d2) E D 2. 

(2) For any ~/l, ~/2 E T3(M; m), if "yllD[3;l,3l = ~2lOil;2,3l , then there 
exists a unique function ~ v  .~): D 3 3 / D  ~ M such that ~ v  .) o q~2 = ~/1 
and ~ , , v . )  o ~J2 = ~/2- In this case we define a microsquare ~/2 ~- ~/t in "I'2(M; 
m) as follows: 

(2.12) (~/2 2 ~h)(dl, d2) = 2 (~,.Q(0, dl, 0, d~) for  any (dl, d2) ~ D 2. 

(3) For any ~h, ~/2 e T3(M; m), if  ~/11013;1,2] = ~/2lOtLl,21, then there 
3 2 3 o exists a unique function ~(v ~9: D y D --~ M such that ~ e . .  ) q~3 = ~/~ 

1 '  I ~ I  2 �9 J -  . 

and ~ , , ~ )  o t~3 = ~/2- In th~s case we define a rmcrosquare ~/2 3 ~/~ in T2(M; 
m) as follows: 

(2.13) (~2 3 ~h)(db d2) = 3 (.te~Q(0, 0, dl ,  d2) for any (dr, d2) e D 2. 

Proof. Follows directly f rom Lemma  2.1. �9 
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It is not difficult to see that the three kinds of strong difference in the 
above proposition correspond to three ways of viewing microcubes on M as 
microsquares on M ~ What makes the theory of microcubes more than a 
prosaic three-dimensional generalization of Kock and Lavendhomme's (1984) 
theory of strong difference for microsquares is the interaction among the 
three kinds of strong difference. 

We do not need the notion of strong translation in microcubes as far as 
our principal application (i.e., the Jacobi identity) is concerned, but we will 
present its definition for completeness. 

Lemma 2.3. The diagrams 

D 

D 3 

.2 

qOl 

.2 

) D 2 

) D  3 y D  

D > D 2 

231 1 
D 3 ~ D 3 y D 

q~2 

.2 
D ,1 ) D 2 

D 3 ) D 3 ~ D 
q~3 

are quasi-colimit diagrams of small objects, where 

(2.14) 
(2.15) 
(2.16) 
(2.17) 
(2.18) 
(2.19) 
(2.20) 

i~(d) = (d, 0) for any d ~ D. 
,'3(d) = (d, 0, 0) for any d e D. 
,32(d) = (0, d, 0) for any d e D. 
,33(d) = (0, 0, d) for any d ~ D. 
et(dl, d2) = (dl, 0, 0, d2) for any (dl, d2) E D 2. 
e2(dl, d2) = (0, dl, O, d2) for any (dl, d2) e D 2. 
e3(dl, d2) = (0, 0, dl, d2) for any (di, d2) ~ D 2. 
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Proposition 2.4. (1) For any e t e  T2(M; m) and any ~/ E T3(M; m), if 
ot 0:2 = ~/oi3, then there exists a unique function/f~,~) o el = et andh~,v ) o 
q~l = ~/. In this case we define a microcube ct ~ ~/in T3(M; m) as follows: 

(2.21) (et t ~/)(dl, d2, d3) - ' -,r d2, d3, d2d3) for any (dr, d2, d3) 
~D.r~3 

(2) For any et ~ TZ(M; m) and any ~/ E T3(M; m), if et o,~ = ~/o,3, 
then there exists a unique function,r ) o e2 = et and,C~,v ) o q02 = ~/. In this 
case we define a microcube ~t j- ~/in Ta(M; m) as follows: 

(2.22) (eta_ "y)(dl, d2, da) = ,r d2, d3, dld3) for any (dl, d2, d3) 
E O "~ 

(3) For any et e T2(M; m) and any ~/ e Ta(M; m), if et oi 2 = ~/oi  3, 
then there exists a unique function/f~.v) o ea = et and/f~,v) C_ q~a = ~/. In 
this case we define a microcube et +~ ~/in Ta(M; m) as follows: 

(2.23) (or j -  ~/)(dl, dz, d3) - a --,4'(a,,t)(dl, d2, d3, did2) for any (dl, d2, d3) 
E D j 

Proof. Follows directly from Lemma 2.3. �9 

It is not difficult to see that the three kinds of strong translation in the 
above proposition correspond to three ways of viewing microcubes on M as 
microsquares on M ~ 

Leaving a prosy modification of Kock and Lavendhomme's (1984) 
theory of strong difference for each of the three kinds of strong difference 
for microcubes to the reader, we now turn to their interactions and their 
applications to Lie brackets of vector fields. 

Given ~/ E Ta(M; m) and p E ~eEIIt3, the microcube E0(~/) in T3(M; 
m) is defined as follows: 

(2.24) Ep(~/)(dl, d2, d3) = ~/(dp(l), d0(2 ), dr for any (db d2, d3) E D 3. 

Permutations in ~e~m3 induce permutations among the three strong 
differences ~-, 2 ,  and 3 for microcubes. Since every permutation can be 
written as a composition of transpositions, it suffices to see how transpositions 
such as (12) affect the three strong differences. The following proposition 
should be obvious. 

Proposition 2.5. (1) For any ~/1, "~2 E T3(M; m), ~/l IO[3;2,3] = ~21 0[3;2,3] iff 

]~(23)(~1)1D[3;2,3] = ~(23)('y2)lD[3;2,3] 

If any of the two equivalent conditions (therefore both of them) holds, then 

(2.25) ~2 1 ~1 = E(23)('Y2) 1 E(23) (~1). 
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(2) For any "~1, '~2 ~ T3(M; m), ~/11D[3;1,3] = ~21D[3;1,3] iff 

~(13)(~/1) 1D[3;1,3] ---- ~(13)('~2) ID[3;1,31 

If any of the two equivalent conditions (therefore both of them) holds, then 

(2.26) ~/2 2 ~h = ~(13)(~/2) 2 E(13)(~h) �9 

(3) For any "Yl, ~/2 ~ T3(M; m), ~/l IDt3;t,21 = ~/21D[3,1,21 iff 

~(12)('~1) 1013;1,21 ---- ~(12)(W2)1013;1,21 

If any of the two equivalent conditions (therefore both of them) holds, then 

(2.27) "~2 3 'Yl = ~(12)('~2) 3 E(12) (~1)" 

(4) For any ~/1, ~2 E Ta(M; m), if ~/11D[3;2,31 = "~21D[3;2,31, then 

~(12)('y1)lD[3;l,3l = ~(12)(~2)1D[3;1,31 

and 

In this case we have 

and 

~(13)(~11) I D[3;I,21 = ~(13)(~2)1D13;1,21 

(2.28) ~/2 1 ~/1 ---- ~(12)(~2) 2 ~(12) (~/1) 
---- ~(13) (~/2) 3 ~(13) (~/1) 

(5) For any ~h, ~/2 ~ T3(M; m), if ~/l IO[3;1,31 ---- ~/21D[3;1,3], then 

]~(12)(~/1)1D[3;2,3] = ]~(t2)(~/2)ID[3;2,3] 

In this case we have 

and 

~(23)(~/1) 1 O[3;1,2] ---- ~(23)('~/2) IO[3;1,2] 

(2.29) "~2 2 "Y1 ---- ~(12)(~2) 1 E(12) (~1) 
= ~(23)('~2) 3 ~(23)(~1) 

(6) For any ~/1, ~/2 e T3(M;  m),  if ~/l ID[3;1,2] ---- ~/21D[3;1,2], then 

~(13)(~/1) [ D[3;2,3] = ~(13)(~/2) [D[3;2,3] 

In this case we have 

(2.30) 

]~(23)('~1)1D[3;1,3] = ~(23)(~/2)1D[3;1,3] 

'~2 3 ~/1 ---- E(13)('~2) 1 E(13) ('~1) 
= E(23) (~/2) 2 ~(23)(~1) 
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We close this section by relating our three-dimensional theory of strong 
differences to Lie brackets of vector fields. 

Given X e xI(M) and U E x2(M), we define X * U and U * X in x3(M) 
as follows: 

(2.31) (U * X) (d l ,  d2, d3) = U(d2, d3) o X(dl )  for any (dl, d2, d3) ~ D 3. 
(2.32) (X * U) (d l ,  d2, d3) -'-- X(d3) o U(dl  ' d2) for  any  (dl, d2, d3) ~ D 3. 

The following proposition should be obvious. 

Proposition 2.6. For any X ~ xl(M) and any U, V ~ x2(M) with UID(2) 
= VI D(2), we have the following: 

(2.33) U * XID[3;2,3] = V * X10[3,2,31 
(2.34) X * UIDI3;I,2] --- X * VID[3;I,2] 
(2.35) U ' X - I -  V * X = ( U  " - - V ) * X  
(2.36) X * U 3 X *  V = E ( X * ( U - "  V)) 

The following simple proposition suggests how our burgeoning theory 
of microcubes is intimately related with the so-called Jacobi identity of vector 
fields. This point will be deepened in the next section. 

Proposition 2.7. Given X, Y, Z e xt(M), let it be the case that 

(2.37) "~123 = Z * Y * X 
(2.38) ~h32 = ~(23)(Y * Z * X) 
(2.39) ~/213 = Etl2)(Z * X * Y) 
(2.40) ~/23J = Eo23)(X * Z * Y) 
(2.41) ~/312 = ~(132)( Y *  X * Z)  
(2.42) "Y321 = EO3)(X * Y * Z) 

Then the right-hand sides of the following three identities are meaningful, 
and all the three identities hold: 

(2.43) [X, [Y, Z ] ]  -~- ('~123 1 '~132) ~" ('~231 1 '~321) 
(2.44) [Y, [Z, X] ]  -~- (~231 ~- '~]213) ~" ('~312 ~- "~132) 
(2.45) [Z, [X, Y]] = (~/312 3 ~/321) --" (~h23 3 ~/213) 

Proof. Follows from Propositions 1.5, 1.6, 2.5, and 2.6. �9 

3. THE GENERAL JACOBI IDENTITY 

Entirely distinct from in standard differential geometry, the so-called 
Jacobi identity of vector fields with respect to Lie brackets occupies a nag- 
gingly ticklish position in synthetic differential geometry. Several synthetic 
proofs of it are known, namely, Kock (1981), Lavendhomme (1996), Nishi- 
mura (1997), and Reyes and Wraith (1978), among which Nishimura (1997) 
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is the most elegant. This section is by no means intended to give another 
nice proof of  it, but to probe into a deeper structure making it effective. The 
main result of  the section is the following unexpected generalization of  the 
identity, whose proof will show how and why the Jacobi identity should hold 
with respect to Lie brackets of  vector fields. 

Theorem 3.1. Let '~123, ~132, ~/213, ~231, "~312, '~321 E T3(M; m). As far as 
all of the following three expressions are well defined, they sum up only 
to vanish: 

(3.1) (~123 1 ~/132) ~" (~231 1 "Y321) 
(3.2) (~231 2 ~/213) ~" ('~312 2 "~132) 
(3.3) (~/312 3 "~321) ~" (~123 3 '~213) 

Before embarking upon a proof of  the above theorem, we note that the 
celebrated Jacobi identity of  vector fields with respect to Lie brackets is a 
direct consequence of it. White's (1982, p. 100) Exercise 11 of  Chapter 2 
dealt with the Jacobi identity of  vector fields on manifolds by using his 
favorite method of iterated tangents. 

Theorem 3.2. For any X, Y Z ~ xI(M), we have the following Jacobi 
identity: 

(3.4) [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 

Proof. Let ~123, ~/132, ~213, ~/231, ~/312, ~/321 be as in Proposition 2.7. Then 
(3.4) follows from Proposition 2.7 and the above theorem. �9 

To understand how Theorem 3.1 prevails, let us ponder the simple case 
that M = R and m = 0 (the latter condition is inessential, but it is taken for 
the sake of  simplicity), in which the so-called general Kock axiom (cf. 
Lavendhomme, 1996, w warrants that the microcubes ~123, ~/132, ~/213, 
~231, ~312, and ~321 at issue are polynomials of  dl, d2, and d3 in D with 
coefficients in R: 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

'Y123(dl, d2, d3) = 
a123d2d3 + alx2z3dld3 
'~132(dl, d2, d3) = 
a  2d2d3 + a 2d d3 
~213(dl, d2, d3) = 
a213 d2d3 -~- a2xlz3 dld3 
"Y231(dl, d2, d3) = 
a2y31d2d3 + a2xz31dld3 
~/312(dl, d2, d3) = 
a31z2d2d3 -I- a3xzl2dld3 

a/23dl + a123d2 --I- a123d3 -'1- alxy23dld2 + 
+ a~3dtd2d3 
d32dl + ayl32d2 + az132/3 -Jr a~2dld2 + 
+ a~2dld2d3 
a213dl + a213a2 + a213a3 + Uxy-213dul"2d .].. 
+ a~3dld2d3 
f123181 .4- a231d2 .-}- a231d3 + d~ ld ld2  -~ 

+ a~ldld2d3 
ax312at + a3t2a2 + a3zlza3 + a~Eala2 + 
+ a~2dld2d3 
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(3.10)  ~/321(dl, d2, d3) = a32tdl + a32td2 + a321d3 + a ~ l d t d 2  + 

a3y2td2d3 + a~tdtd3 + a~ld,d2d3 

First we consider conditions under which expression (3.1) is meaningful. 
That the expression '~/123 1 '~/132 is well defined means the following five 
identities: 

(3.11) ax 123 = ax 132 
a 123 ~_. a132 

(3.13) 
(3.14) a123_--_132 

xlXz ~xy (3.15) a 3 ~132 L~X z 

And we have 

(3.16) (~h23 1 '~/132)(dl, d2, d3) = a123dl + ,Uyz(-123 - ayz132)d2d3 + ,,Uxyz(-123 
- a~)dld2d3 

Similarly, that the expression "Y231 ~ '~/321 is well defined means the 
following five identities: 

(3.17) a TM = ax 321 
a 321 

(3.18) ai~: a~ 21 
(3.19) = 
(3.20) a~  1 = a 321 
(3.21) _231 ~3~1 

And we have 

(3.22) (~'23~ ~- ~'320(dl, d2d3) = ap~d~ + (a~  1 - a~2~)d2d3 + ( a ~  - 
a~)dld2d3 

That the expression (~h23 ~- ~h32) --" (~/231 ~ "/321) is well defined means 
the following two identities: 

(3.23) a~ 23 = a 231 
(3.24) -123 __ a~2 -231 -321 

Uy z ~ t~y z - -  Uy z 

And we have at last 

(3.25) ((~t:3 -i- ~32) "- (~231 7 "y3:O)(d~d~d3) = (a~ 3 - a ~  - a ~  
+ a~)d~d2d3 

Now we turn to the expression (3.2). That the expression "~231 2 ~/21a 
is well defined means the following five identities: 

(3.26) a~ 31 = a 213 
a TM ~ a 213 

(3 .27)  a!3l  a!13 
(3.28) 
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(3.29) a ~  1 = a~y ~3 
(3.30) a TM = a2z 13 

And we have 

( 3 . 3 1 )  (~/231 2 "Y213)(d2' d l d 3 )  = a231d2 -{- (Uxz_231 _ a2xzl3)dld3 ..[_ ",Uxyz(-231 _ 
213 axyz )dld2d3 

Similarly, that the expression '~312 2 "Y132 is well defined means the 
fol lowing five identities: 

(3.32) a 312 = a 132 
( 3 . 3 3 )  a 312 = a 132 

(3.34) a 312 = a~ 32 

(3.35) a ~  2 = a ~  2 
(3.36) a3~ 2 -- ay ~32 

And we have 

( 3 . 3 7 )  (~/312 2 ~ 132)(d2' d i d 3 )  a312d2 + (ax3zl2 t32 = -- axz )did3 + (a2xy 31 - 
a~tz)dld2d3 

That the expression ('Y231 2 ~213) -:-" ('~312 2 ')/132) is well defined means 
the following two identities: 

(3.38) a TM = a 312 
(3.39) a~z 3t - a 213 = ax3z t2 - ax  132 

And we have at last 

(3.40) (('~231 2 "~213) ":" ('~312 2 "Y132))(dld2d3) = ",ttxyz(~231 _ Uxyz-213 _ 
312 132 axyz + axyz)dld2d3 

Now we turn to the expression (3.3). That the expression ~/312 3 ~/321 
is well defined means the fol lowing five identities: 

(3.41) a 312 = a 321 
(3.42) a 312 = ay 321 
(3.43) az 312 = a 321 

(3.44) ax3z 12 = a ~  1 
(3.45) a 312 = a 321 

And we have 

(3.46) ('Y312 3 ~ 321)(d3, did2) = ~z~312d~3 + ( a ~  2 - -  a,:y321)dtd2 + ,,Uxyz(-312 
a3x2ylz)dld2d3 

Similarly, that the expression "Y~23 3 "/213 is well defined means the 
following five identities: 
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(3.47) a 123 ~--" ax  213 

(3.48) a 123 = ay 213 
(3.49) a~23  = Uz-213 
( 3 . 5 0 )  3 = 3 

(3.51) _123 _213 ~yz ~ Uyz 

And we have 

(3.52) ('~123 3 "~213)(d3' dld2) = a~23d3 + (alxy 23 - a~3)dld2 + (_t23 _ xUxyz 
a~3)dld2d3 

That the expression (~/312 3 ~/321) --" (~/123 3 "~213) is well defined means 
the following two identities: 

(3.53) a 312 = a~ 23 
(3.54) a~ 2 - a3xy 21 = a ~  3 - a~  3 

And we have at last 

(3.55) ( ( '~312 3 "~321) ---" ( '~123 3 "Y213))(dld2d3) = xUxyz(~312 _ Uxyz~321 _ Uxyz-123 
213 + a~yz )dld2d3 

It is evident that the right-hand sides of  (3.25), (3.40), and (3.55) sum 
up to 0. 

As we have seen, in order that all o f  the three expressions (3.1)-(3.3)  
may be meaningful  with "~123, "~132, "~213, '~231, "~312, and "~321 in the forms 
(3 .5)-(3 .10)  respectively, they must abide by 36 conditions (3.11)-(3.15),  
(3.17)-(3.21),  (3.23), (3.24), (3.26)-(3.30),  (3.32)-(3.36) ,  (3.38), (3.39), 
(3.41)-(3.45),  and (3.47)-(3.51),  (3.53), and (3.54). Now we have to remark 
that these 36 conditions are far f rom independent.  First note that f ive condi- 
tions (3.11), (3.17), (3.26), (3.32), and (3.41) can be put into the following 
form: 

( 3 . 5 6 )  a 123 = a 132 = a 213 = a x  TM = a 312 = a 321 

The new condition (3.56) supersedes not only the above five conditions, but 
also conditions (3.23) and (3.47). 

By the same token, the derivable condition 

(3.57) ay 123 : ay 132 : ay 213 : a 231= ay 312 = ay 321 

supersedes the seven conditions (3.12), (3.18), (3.27), (3.33), (3.38), (3.42), 
and (3.48), and the derivable condition 

(3.58) a~ 23 = a~ 32 = a 213 = az TM = a 312 = a 321 

supersedes the seven conditions (3.13), (3.19), (3.28), (3.34), (3.43), (3.49), 
and (3.53). 



1114 Nishimura 

Four conditions (3.14), (3.20), (3.29), and (3.35) can be recapitulated 
as follows: 

(3.59) alxy 23 ----- a ~  2 :- a~ 2 and a~  3 = a ~  1 = a3xy 21 

We note that condition (3.54) is a direct consequence of the above condition. 
Conditions (3.15), (3.21), (3.44), and (3.50) can be combined into 

(3.60) Uxz-123 = alaz32 = Uxz-213 and ax2z 31 = Uxz-312 _~_ t~xz~321 

It is now evident that condition (3.39) is redundant. 
Conditions (3.30), (3.36), (3.45), and (3.51) can be combined into 

(3.61) a 123 = a 213 = ay TM and ay t32 = ay 312 = a3z 2t 

Now condition (3.24) readily turns out to be redundant. 
The previous 36 conditions in a mess that the microcubes ~/123, "/132, 

~213, ~231, ~/312, and ~/321 on R are required to satisfy have been replaced by 
the decent set of  six conditions (3.56)-(3.61), of  which we are no longer 
able to prune a modicum of superfluity. 

What we have to do in order to convert the above simple argument of  
high school mathematics into a formal proof of  Theorem 3.1 is, as is usual 
in synthetic differential geometry, to write out an appropriate quasi-colimit 
diagram of small objects corresponding to the above manipulation of polyno- 
mials, which we now present in the following lemma: 

Lemma 3.3. The diagram consisting of objects 

(3.62) 1 
(3.63) E123, E132, E213, E231, E312, E321, all of which are equal to/93 
(3.64) Ell , El2, both of  which are equal to i)3 u D 
(3.65) E21, E22, both of  which are equal to D 3 ~ D 
(3.66) E31, E32, both of  which are equal to/93 ~ D 
(3.67) Glt, G12, both of  which are equal to D[3; 2, 3] 
(3.68) G21, G22, both of which are equal to D[3; 1, 3] 
(3.69) G31, G32, both of  which are equal to D[3; 1, 2] 
(3.70) G1, G2, G3, all of  which are equal to D(2) 
(3.71) E, which is equal to/)3 v D y D ~/D v D(2) 

and of morphisms 

(3.72) 1 --~ G11, 1 --~ G12, 1 -~ G21, 1 -~ G22, 1 -~ G31, 1 --~ G32 
(3.73) GII .L-> E123 ' Gll _L> E132 ' GI2 --(-> E231, Gl2 _L.> E321, G21 -~ E231, 

G2 l .L_> E213 ' G22 ..L> E312 ' G22 -% E132, G31 _L.> E312 ' G31 .~  E321 ' 
G32 -% E123, 632 -% E213 
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(3.74) ~1 ~Pl ~2 tP2 
E132 > El l ,  E321 .) El2 , E213 ------9 E21 , El32 ) E~2, E321 
�9 3 ~3 ~1 IIq ~ ip 2 

---> E~I, E213 ~ E~2, E123 ---o El l ,  E231 ---->/~12, E231 ~ E21, 

P--,312 ~ /~22, /?-,312 ~ P--'31, /2~123 ---") P-'32 

(3.75) Gt "-~ En, Gl / t )  El2, Gz .~2> E21, G2 /2> E22, G3 /3> E31, 
G3 - ~  E32 

022 (3.76) E,1 - ~  E, E~2 ol~ E, E21 02~) E, E22 E, E3~ - ~  E, E32 

e 

is a quasi-colimit diagram of small objects with its quasi-colimit E, where 

(3.77) 193 y D ~ D~( D v D(2) = {(dl, d2, d3, el, e2, e3, fl, f2) �9 
D s l eld2 = elcl-3 = e2dl = e2d3 = e3dl = e3d2 = ele2 = ele3 = 

e2e3 = f l f 2  = f l d l  = f l d2  = f ld3  = f ie1  = f i e 2  = f i e3  = f2d t  = 

f2d2 = f2d3 = f2el  = f:e2 = f2e3 = 0} 
(3.78) /1(dl, d2) = (dl, 0, 0, d2) for any (dl, d2) �9 D(2) 
(3.79) /2(dl, d2) = (0, dl, 0, d2) for any (dl, d2) �9 D(2) 
(3.80) /3(dl, d2) = (0, 0, dr, d2) for any (db d2) �9 D(2) 
(3.81) 011(dl, dE, d3, d4) 

= (d , , d2 ,  d3, d2d 3 - d4, 0, 0, 0, 0 ) 
for any (dl, d2, d3, d4) �9 D 3 y D 

(3.82) 012(dl, d2, d3, d4) 
= (dl,  d2, d3, d2d3 - d4, did3, dld2, O, d~d2d3 - did4) 
for any (dl, d2, d3, d4) �9 D 3 y D 

(3.83) 02~(d~, d2, d3, d4) 
= (rib d2, d3, O, d4, did2, O, O) 
for any (dl, d2, d3, d4) �9 D 3 ~ D 

(3.84) 022(d~, d2, d3, d4) 
= (dr, d2, d3, d2d3, d4, O, d2d4, O) 
for any (dl, d2, d3, d4) �9 193 ~ D 

(3.85) 031(d~, d2, d3, d4) 
= (dl ,  d2, d3, d2d3, did3, did2 - d4, d3d4, dtd2d3 - d3d4) 
for any (dl, d2, d3, d4) �9 D 3 ~ D 

(3.86) 032(d 1, d2, d3, d4) 
= (d~, dE, d3, O, O, did2 - d4, 0, 0) 
for any (dl, d2, d3, d4) �9 D 3 ~ D 

Proof .  The preceding considerations on the case of M = R show that 
the inverse limit of the diagram of objects (3.62)-(3.70) and morphisms 
(3.72)-(3.75) perceived by R can be identified with the set of 6-tuples (~123, 



1116 Nishimura 

"Yt32, ~213, 'Y231, ~312, "~321) of polynomials o fdb  d2, and d3 in D with coefficients 
in R of the following forms (3.87)-(3.92) that abide by conditions (3.56)- 
(3.61) and the succeeding condition (3.93): 

( 3 . 8 7 )  ~h23(db  d2, d3)  = a 123 + ax123dl + ay123d2 + a~23d3 + a~3dld2 + 
123 al~zdld3 + axy~dld2d 3 ay z d2d3 + 123 

'Y132(dl, d2,  d3)  = a 132 + ax132dl + ay132d2 + t~z~132"4u3 + a~2dld2 + 
aly32df13 + alx32d,d3 + atxy32zdld2d3 
~213(dl, d2, d3) = a 213 + ax213dl + a213d2 + ax213d3 + a~3dld2 
+ ~213d . /  + ~213.4 .4 + a~3zdtd2d3 t4y z t~2tt3 Ux z t~lt~ 3 

(3.88) 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

~231(dl ,  d2, d3)  = a2at 
a~ld2d3 + a~ldld3 + 
~/312(dl, d2,  d3)  = a 312 
a3~2d2d3 + a~2dld3 + 
~321(dl, d2, d3) = a 321 

+ a231dt + a23td 2 + a~zld3 + a~ldld2 + 
a~zdld2d3 
+ a3~2dl + a312d 2 + a312d3 + a~2dld2 + 
a~2flld2d3 
+ a321d 1 + a321d2 + a~z ld3 + a~d~d~ + 

a~ld2d3 + a~ldld3 + a~ , dE d3  
(3.93) a 123 = a 132 = a 213 = a TM = a 312 = a 321 

It is easy to see that for any function ~/: E --> R, the 6-tuple 

(,~ o 011 o 01 ,  'Y o 011 o q01, ,~ o 021 o q)2, "~ o 012 o ~J1, '~ o 022 o ~2,  ~/ o 012 o q)l) 

of functions from D 3 to R is identical with the 6-tuple 

(,~ o 032 o 11/3 , ,~ o 022 o ~02, ~ o 032 o ~03, ,~ o 021 o 1~2, ,~ o 0a I 0 I~J3, ~ o 031 o q03) 

of functions from D 3 to R, and satisfies conditions (3.56)-(3.61) and (3.93) 
providing that the six functions are expressed as polynomials (3.87)-(3.92) in 
order. Conversely, given six polynomials (3.87)-(3.92) abiding by conditions 
(3.56)-(3.61) and (3.93), there exists exactly one function ~/: E --~ R such 
that the six functions of the 6-tuple 

( ~  o 011 o ~J1, "~ o 011 o q01, ,y o 021 o q)2, "~ o 012 o I~1, ,,~ o 022 o 1~2, ~/ o 012 o ~01) 

are identical with polynomials (3.87)-(3.92) in order. More specifically, the 
desired ~ should be a polynomial of dr, d2, d3, el, e2, e3, fl ,  and f2 in D with 
coefficients in R of the following form: 

( 3 . 9 4 )  7 ( d l ,  d2,  d3, e l ,  e2, es ,  f l  j~  ) = a 123 + ax123dl + a123d2 + a123d3 
+ a~3dld2 + a~zd2d3 + a~zdld3 + 123 r _ 123 axyflld2d3 + ,Uyz a~,z )el 
+ (a~ 1 - a~)e2 + (a~ 3 - a~23)e3 + ( a l ~ -  a~)dte~ + ( a ~  
- a2~y3)d2e2 + (a~ 3 - a~)d3e3 + (a~ 2 - a ~  + a~ 3 - a~)f~ 
+ + 

These considerations show that the assignment, to each function ",/: E 
R, of the 6-tuple 

(~/ o O11 o l~ll ' ,~ o 011 o q01, ~/ o 021 o ~02, ,y o 012 o i~jl ' 7 o 022 o ~J2, ~ / o  012 o qOl) 
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renders a bijective correspondence between the functions from E to R and 
the 6-tuples of polynomials of  forms (3.87)-(3.92) abiding by conditions 
(3.56)-(3.61) and (3.93). Therefore the proof is complete. �9 

Proposition 3.4. If all three expressions (3.1)-(3.3) are meaningful, there 
exists a unique function 

r~ : D 3 (VI2YVI32,VEI3,VE31,,,/312,V321) y D x~ D ~ D v D(2) ---) M 

abiding by the following conditions: 

(3.95) m(,,/123,~/132,~/213,,./231,.,/312,.Y321) o 011 -,jT- ~,Y132,~/123)1 
(3.96) m(,Y123,~/132,~213,~/231,,,/312,~/321 ) o 012 ~_~,~(~321,.Y231) 
(3.97) o "e~ ('Y123,"/132,~213,~231,"/312,~/321) 021 - -~  (~/213,~312) 
(3.98) ,'~(~/123,~/132,721Y~/231,.Y312,~/321) o 022 --~(./132,.,/312 ) 
(3.99) ,.~ (~12y,Y132,~/213,~/231,../312,.Y321) o 031 _ ~  (,,/321,~312) 

(3.100) .n(~123,../132,3,213,~/231,./312,~321) o 032 -r 

Proof. Follows from Lemma 3.3. �9 

Now we are ready to present a proof of Theorem 3.1. 

Proof of  Theorem 3.1. Assuming that all three expressions (3.1)-(3.3) 
are meaningful, let 

m : D 3 
(~123,~/132,~/213,7231,~312,~321) y D y D ~ D v D(2) --~ M 

be the function in Proposition 3.4, which we now denote simply by m. It 
follows from condition (3.95) that for any (dl, d2) e D 2, 

- -  1 0, 0, d2) (3.101) (~h23 1 ~132)(dl, d2) -,~(vt32,v123)(dl, 
=,~(d~, 0, 0, - d 2 ,  0, 0, 0, 0) 

It follows from condition (3.96) that for any (dl, d2) ~ D 2, 

- -  1 (3.102) (~/231 1 "Y321)(dl, d2) -,~(V32rVEan)(dl, 0, 0, d2) 
=,'~(dl, 0, 0, -d2,  0, 0, 0, -did2) 

It follows from condition (3.97) that for any (dx, d2) ~ 0 2, 

_ 2 0 (3.103) (~/231 2 "YE13)(dl, d2) -g(v2i3,v231)( , dl, 0, d2) 
= m  (0, dl, 0, 0, d2, 0, 0, 0) 

It follows from condition (3.98) that for any (dl, d2) E D 2, 

- -  2 (3.104) ('~312 2 ~/132)(dl, d2) -.~(vz32,.t3z2)(0, dl,  0, d2) 
= ,,~ (0, dl, O, O, d2, O, did2, O) 

It follows from condition (3.99) that for any (d~, d2) ~ D 2, 
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- 3 0 0, dl, d2) (3.105) ('~312 3 'Y321)(dl, d2) --~('Y321,'Y312)( , 
=m(0 ,  0, dl, 0, 0, -d2,  did2, -d id2)  

It follows from condition (3.100) that for any (dl, d2) e D 2, 

_ 3 0 0, dr, dE) (3.106) ('Y123 3 T213)(dl, d2) -.~(V2|yV123)( , 
=/#(0,  0, dl, 0, 0, -d2,  0, 0) 

It follows from (3.101) and (3.102) that for any (dr, d2, d3) ~ D 2 v D, 

(3.107) j~(T231t.Y321,T123t.Y132)(dl, d2, d3) 
= m  (dl, O, O, - d  2, O, O, O, d3 - did2) 

It follows from (3.103) and (3.104) that for any (dr, d2, d3) ~ D 2 v D, 

(3.108) t(T3t2,,t132,~t231-/-,t213)(dl, d2, d3) 
=,-,,(0, d~, O, O, d2, O, did2 - d3, O) 

It follows from (3.105) and (3.106) that (dl, d2, d3) ~ D 2 v D, 

(3.109) ~(-Y123,-,/213,~/312,T321)(dl, d2, d3) 
=m(0 ,  0, dl, 0, 0, -d2,  d3, -d3)  

It follows from (3.107) that for any d e D, 

(3.110) ((~h23 ~ "Y132) "-- ('Y231 ~ "Y321))(d) 
= m (0 ,  0, 0, 0, 0, 0, 0, d)  

It follows from (3.108) that for any d E D, 

(3.111) (('Y231 2 T213) ~" (~312 2 "Y132))(d) 
=m(0 ,  0, 0, 0, 0, 0, - d ,  0) 

It follows from (3.109) that for any d ~ D, 

(3.112) ((T312 3 T321) --" (3q23 3 T213))(d) 
=m(0 ,  0, 0, 0, 0, 0, d, - d )  

It follows readily from (3.110)-(3.112) that for any (dl, dE, d3) ~ D(3), 

(3.113) l(tt,,2,t3)(dl, d2, d3) 
=in(0 ,  0, 0, 0, 0, 0, - d  2 q- d3, dl - d3) 

where tl, t2, and t3 stand for tangent vectors represented by (3.1), (3.2), and 
(3.3), respectively. Therefore, for any d e D, 

(3.114) (h + t2 + t3)(d) 
= l(tl,t2,t3)(d, d, d) 
=,, ,(0,  0, 0, 0, 0, 0, 0, 0) 

Now the proof is complete. �9 
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4. S I M P L I C I A L  O B J E C T S  

Let n be a natural number and n the set consisting exactly of 1, 2 . . . . .  
n. For any natural number k with 2 < k <- n, we let 

(4.1) Akn = [(il . . . . .  ik) ~ nklit < "'" < ik} 

We let An = tJ~=2 Ak. For any subset la C An, we define 

(4.2) D~(p) = { (dl, d2 . . . . .  dn) E D n I d i l  . . .  dik : 0 

for any (il . . . . .  ik) ~ p} 

If p is the empty set, D~(p) is /Y'  itself. If p = An, then D~(p) is D(n) in 
standard terminology. A small object of the form Dn(p) for some subset 1o 
of An is called a simplicial object of  degree n. The small object D(n) is called 
the tensorial object of  degree n. Given ( i , j )  e An, we denote the set D~({(i, 
j )})  by D[n; i, j], which is compatible with the notation of Section 2. Given 
a simplicial object/Y'(p), we denote by So~(p)(M; m) the set of functions r: 
/Y'(p) ---> M with "r(0 . . . . .  0) = m. We denote by $o~(p)(M) the set of  all 
functions "r: Dn(1o) --> M. We denote by 6~ the ith injection of  D into D~(1o) 
(1 <-- i --< n). The function 

x E So"(p)(M; m) ,-. ('r o6"1 . . . . .  x ~ E (TL(M; m)) n 

which is the restriction function to the axes, is generally denoted by K. 
Now we make explicit a result on D(2), which should be considered to 

belong to the folklore of  synthetic differential geometry. 

Lemma 4.1. The diagram 

0 
1 > D 

01 1 
D > D(2) 

6" 1 

is a quasi-colimit diagram of  small objects, where 

(4.3) , l (d )  = (d, 0) for any d ~ D; 
(4.4) i2(d) = (0, d) for any d E D. 

Proof. See Proposition 6 of  Lavendhomme (1996, w I 

Proposition 4.2. For any tl, t2 E "1" l(M; m), there exists a unique function 
or: D(2) --+ M such that et(d, 0) = tl(d) and or(0, d) = t2(d) for any d ~ D, 
in which we write ot = ti + t2. 
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Proof. Follows from Lemma 4.1. �9 

Therefore K: So~2)(M; m) ---> TI(M; m) • Tl(M; m) is a bijection. By 
the same token, K: $o(,)(M; m) ---> ('I'I(M; m)y  is a bijection for any natural 
number n. 

The following lemma and proposition are generalizations of the preced- 
ing lemma and proposition on D(2) to D[n + 2; n + 1, n + 2]. 

Lemma 4.3. The diagram 

D n 

/ 

Dn+l 

/ ) ~+1 

)D[n+2;n+ 1, n + 2 ]  

is a quasi-colimit diagram of small objects, where 

(4.5) / ( d l  . . . . .  dn) = (dl . . . . .  dn, O) for any (d l , . .  :, dn) e 1~ (unless 
stated to the cont rary , /~  is regarded canonically as a subobject 
of D "+l under the injection/); 

(4.6) ,Cl(d I . . . . .  dn+l) = (dl . . . . .  d~+l, 0) for any (d I . . . . .  dn+l) e ~+1; 
(4.7) f2(d! . . . . .  dn+l) = ( d l  . . . . .  dn, O, d,+l) for any (dl . . . . .  d,+l) 

D ~+1. 

Proposition 4.4. For any 81, 82 e "l'~+l(M; m) with 81 o/ = 82 o/, there 
exists a unique function ~:: D[n + 2; n + 1, n + 2] --> M such that -r oh1 = 
81 and "r oh2 = 82, in which we write "r = 81 �9 82. 

Proof. Follows from Lemma 4.3. �9 

Given 81, 82 e T~+l(M; m) with 8 t lo ,  = 821o ~, we define a function 
V(81, 82): D "+2 ~ M such that for any (dl . . . . .  d~+2) e D ~+2. 

(4.8) V(81, 82)(dl . . . . .  dn+2) = V(81(dl . . . . .  d~), 8 2 ( d  I . . . . .  

d~))(dn+l, d~+2) 

where in the right-hand side of the equality 81 and 82 are to be regarded as 
functions from D ~ to M ~ in the expected manner. 

Given (i, j )  E A~+ z and r e Tn+2(M; m), we define Vijr e Tn+2(M; m) 
and (Tj,,,r e T~+2(M; m), also written Vi/r and Vii't, as follows: 

(4.9) In case o f ( i , j )  = (n + 1, n + 2), let 81, 82 e Tn+I(M; m) such 
that 81 "{- 8 2 = 'rlD[n+2;n+l,n+2]; we define V.+t,.+2"r = 7(82, 82). 

(4.10) In case of j = n + 1, we define Vi/r = 
Y-,~,.+2)(:~.+ ,..+ 2)(~',,§ t,.§ + 1)(:~.+ 1,.+2)('r))) 
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(4.11) In case of j -< n, we define V0,r = 
~(i,n+ l )(~(j,n+ 2)(~ n+ l,n+ 2~(i,n+ 1)(~(j,n+2)(T))))) 

(4.12) We define Vii T = ~(id.)(Vij~(i,j)("r)). 

In case of n = 0 and (i, j )  = (1, 2), V/j'r is often written simply V'r. 

Proposition 4.5. Let n and k be natural numbers. Let ti E TI(M; m) (1 
<- i <- n + k). Then there exist -rj E Tn+l(M; m) (1 --- j --- k) such that 

(4.13) "r~l~ . . . . .  "rk I ~ ;  
(4.14) - r jo i i=  ti(1 - - - j<-k ,  1 - < i < - n ) ;  
(4.15) "rj ~  1 = tn+j (1 --< j --< k). 

Proof The proof is carried out by induction on n. If n = 0, the theorem 
holds trivially irrespective of k. Now we show that, assuming that the theorem 
holds for a pair (n, k) of natural numbers with arbitrary k, the theorem holds 
for (n + 1, k). Let ti E Tl(M; m) (1 --- i - n + k + 1). By assumption the 
theorem holds for (n, k + 1), so that there exist g, ~j ~ T"+l(M; m) (1 <- j 
- k) such that 

(4.16) ~1o" = Ytlo" . . . . .  ~klO"; 
(4.17) g ~  = ~ j ~  ti ( 1 - -  j --< k, 1 <--i--<n); 
(4.18) g ~ = t,+fi 
(4.19) Yj ~ = t,+j+l (1 <--j --< k). 

We now take V(g, ~l) . . . . .  V(g, Xk) for "rl . . . . .  "rk, which are easily seen to 
satisfy conditions (4.13)-(4.15). �9 

Corollary 4.6. For any function g: D(n) ---> M, there exists a function 
"r: D" ---> M such that "rio(n) = ~. 

Proof Since K: So(,)(M; m) ---> (TI(M; m))" is a bijection, the desired 
result follows from the above theorem in case of k = 1. �9 

Given a simplicial object 19"(p) of degree n, a (simplicial) lY'(p)-form 
is a function to: S~(~)(M) ---> R such that to is homogeneous componentwise. 
Alternating D"-forms are called singular differential forms of  degree n, while 
alternating D(n)-forms are called classical differential forms of  degree n. 
Given two simplicial objects/Y'(p) and/Y'(q) of the same degree n with 
D"(Q) C D"(13), a D"(p)-form to is said to be essentially a D"(q)-form if for 
any "rl, x2 ~ Son(p)(M; m) with xllo"(q) = "r21tc,(q), we have to('r 0 = to('r2). 
In particular, a D~(l~)-form is said to be essentially tensorial if it is essentially 
a D(n)-form. 

Proposition 4.7. Singular differential forms of degree n are essentially 
classical differential forms of degree n. 
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Proof By the same token as Lavendhomme (1966, w Proposition 
5). �9 

Corollary 4.8. Singular differential forms of  degree n and classical 
differential forms of degree n are in bijective correspondence. 

Proof This follows from Corollary 4.6 and Proposition 4.7. �9 

In passing we note that, to establish Corollary 4.8, we do not need 
such an eccentric notion as that of  symmetrical 3-connection discussed by 
Lavendhomme (1996, w Our Corollary 4.6 will do. We also note that 
the notion of/Y'(1o)-form can be generalized easily to that of Dn(~)-form with 
values in a tangent fiber bundle, as Lavendhomme (1996, w did in 
differential forms, and Proposition 4.7 and Corollary 4.8 hold with due 
modifications. In particular, the curvature form l~ is a/)a-form in this extended 
sense (more specifically it is a D[3; 1, 2]-form in the extended sense), and 
it will be shown in Section 3 that it is essentially tensorial. 

5. ANOTHER STRONG DIFFERENCE IN MICROCUBES 

The following lemma is another three-dimensional generalization of 
Lemma 1.1. 

Lemma 5.1. The diagram 

D[3] i > D3 

il 1, 
D 3 > D 3 x /D 

is a quasi-colimit diagram of small objects, where 

(5.1) D[3] =/93(1(1, 2, 3)1); 
(5.2) D 3 v D =/)4({(1,  4), (2, 4), (3, 4)}); 
(5.3) ~(dl, d2, d3) = (dl, d2, d3, 0) for any (d~, d2, d3) E D3; 
(5.4) ~(dl, d2, d3) = (dl, dE, d3, dld2d3) for any (dl, d2, d3) e D 3. 

The lemma enables us to define the notion of' strong difference for 
microsquares as follows: 

Proposition 5.2. For any ~h, ~/2 ~ T3(M; m), if ~h lot31 = ~/21D[3],  then 
there exists a unique functionfi(v2,v2)- ~p = ~l andfi(vv-t2)" ~ = ~/2. In this case 

in T (M; m) as f6110ws: we define a tangent vector "Y2 ~ ~/1 1 

(5.5) (~/2 --" ~/l)(d) =fi(VrV2)(0, 0, 0, d)  for any d e D. 
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We could define the notion of strong translation and proceed similarly 
as in Lavendhomme (1996, w the details of which are safely left to the 
reader. We note only the following: 

Proposition 5.3. Let '~l, "Y2 E T3(M; m) and p e ~3etm3. Then "YllO[3] 
= "~/21D[31 iff ~p('~l) [D[3] = ]~p('Y2) [ 0[3], in which 

(5.6) ~2 ":-" 'Yl = ]~p('~2) --" ]~p('Y1) 

The following theorem is in the same vein as the general Jacobi identity 
theorem, but the proof of the former is much easier than that of the latter. 

Theorem 5.4. For any "Vl, ~/2, ~/3 ~ "I'3(M; m), if all of the following 
three expressions 

(5.7) ~/l "-- ~/2 
(5.8) ~t2 "-- ~t3 
(5.9) ~t3 "-- ~l 

are well defined, they sum up only to vanish. 
To prove the above theorem, we need, first of all, the following lemma: 

Lemma 5.5. The diagram consisting of objects 

(5.10) 1 
(5.11) Gll, Gl3, G23, all of which are equal to D[3] 
(5.12) El, E2, E3, all of which are equal to/93 
(5.13) E, which is equal to D 2 v D(2) 

and consisting of morphisms 

(5.14) 1 --% Gl2, 1 --% Gl3, 1 -% G23 
(5.15)  G12 .L.> El  ' Gl  2 .L.> E2 ' G23 .L.> E2 ' G23 -% E3, G31 .L.> E3 ' G31 _L.> El  

oi ~ ~ 02 (5.16) /~ I - - - - -> /z ,~2- - - . ->E,E 3 ~  

Is a quasi-colimit diagram of small objects with its quasi-colimit E, where 

(5.17) D 3 v D(2) = O5({(1,4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5)} 
(5.18) 01(dl, d2, d3) = (dl, de, d3, 0, 0) for any (dr, d2, d3) E D 3 
(5.19) 02(dl, d2, d3) = (dl, d2, d3, dld2d3, 0) for any (dl, d2, d3) e /93 
(5.20) 03(dl, d2, d3) = (dl,  d2, d3, 0, dld2d3) for any (dl, d2, d3) ~ 193 

Proof. It is easy to see that the inverse limit of the diagram of objects 
(5.10)-(5.12) and morphisms (5.14) and (5.15) perceived by R can naturally 
be identified with the set of triples (~/t, ~h, ~/3) of polynomials of dr, d2, and 
d3 in D with coefficients in R of the following forms (5.21)-(5.23) abiding 
by conditions (5.24)-(5.30): 
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(5.21) ~,(d,, d2, d3) = a' + a~d, + a~12 + a~3 + atydld2 + alyfl2d3 
+ atfl ld3 + atyzd,d2d3 

(5.22) ~/2(dl, d2, d3) = a 2 + a2xdl + a~12 + a2zcl3 + a~ydld2 + a2zd2d3 
+ a2edld3 + a2yzdld2d3 

(5.23) 3'3(dl, dz, d3) = a 3 + a3fll + a3yd2 + a3zd3 + a3ydld2 + ay3jzd3 
+ a]zdld3 + a3~yzdld2d3 

(5.24) a I = a  2 = a  3 
(5.25) a t = a 2 = a  ] 
(5.26) a~ = a y  2 = a ~  
(5.27) a~ = a 2 =  
(5.28) aty = a]y = a3xy 
(5.29) alz = a~z = a 3 yz 
(5.30) alxz = a2xz = a3z 

It is easy to see that for any function ~/: E ---) R, the triple (~/o 01, ~/o 
02, ~ o 03) of functions from D 3 to R satisfies conditions (5.24)-(5.30) 
provided that the three functions are expressed as polynomials (5.21)-(5.23) 
in order. Conversely, given three polynomials (5.21)-(5.23) satisfying condi- 
tions (5.24)-(5.30), there exists exactly one function ~/: E ~ R such that the 
three functions in the triple (~/o 01, ~ o 02, ~, ~ 03) are identical with polynomials 
(5.21 )-(5.23) in order. More specifically, the desired ~/should be a polynomial 
of dl, d2, d3, el, e2 in D with coefficients in R of the following form: 

(5.31) ~/(dl, d2, d3, el, e2) = a I + a~dt + a~d2 + a~d3 + a~yd,d2 + 
alyzd2d3 + alxzdld3 + alxyzdtd2d3 + (a~yz - a~z)e 1 + (a3xyz - alxyz)e2 

These considerations show that the assignment, to each function ~,: E 
---) R, of the triple (~ o 01, ~/~ 02, ~/~ 03) renders a bijective correspondence 
between the functions from E to R and the triples of polynomials of forms 
(5.21)-(5.23) satisfying conditions (5.24)-(5.30). Therefore the proof is 
complete. �9 

Proposition 5.6. If  all of the three expressions (5.7)-(5.9) are meaningful, 
there exists a unique function'`~vv2.v3): D 3 v D(2) ---) M such that 

(5.32) "`eq.Vz,V3) o 0i = ~i (i = 1, 2, 3). 

Proo f  Follows from Lemma 5.5. �9 

Now we are ready to present a proof of Theorem 5.4. 

Proof  o f  Theorem 5.4. We denote,~tv .~ ~ ) by, ,  for simplicity. The 
�9 . ' 2 , ~ 3  

condmon (5.21) means that for any (dl, dz, ~3) ~ 03, we have the following: 

(5.33) 7~(d~, d2, d3) = ' `(dl ,  d2, d3, 0, 0) 
(5.34) ~/2(d~, d2, d3) = ' `  (dl, d2, d3, dldzd3, O) 
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(5.35) ~/3(dl, d2, d3) =,~ (dl, d2, d3, 0, dldzd3) 

It follows from (5.33) and (5.34) that 

(5.36) ~7(.t2,./|)(dl, d2, d3, d4) =,,~ (dl, d2, d3, dld2d3 - d4, O) 

for any (dr, d2, d3, d4) E D 2 v D. It follows from (5.34) and (5.35) that 

(5.37) ,~(./3,~t2)(dl d2, d3, d4) =,r d2, d3, d4, dld2d3 - d4) 

for any (dl, d2, d3, d4) e D 3 v D. It follows from (5.33) and (5.35) that 

(5.38) ,~(~/l,~t3)(dl, d2, d3, d4) = n ( d b  d2, d3, 0, d4) 

for any (db d2, d3, d4) e D 3 v D. It follows from (5.36) that 

(5.39) (~/1 --" ~/2)(d) =,~(0, 0, 0, - d ,  0) 

for any d E D. It follows from (5.37) that 

(5.40) (~/2 -" ~/3)(d) =,~(0, 0, 0, d, - d )  

for any d ~ D. It follows from (5.38) that 

(5.41) (~/3 --" ~h)(d) =a (0 ,  0, 0, 0, d) 

for any d ~ D. It follows from (5.39)-(5.41) that 

(5.42) l(tl.t2.t3)(d l, d2, d3) = a  (0, 0, 0, d2 - dl, -d2  + d3) 

for any (dl, d2, d3) E D(3). Therefore, for any d ~ D, we have 

(5.43) (tl + t2 + t3)(d) = l(tbt2,t3)(d, d, d )  = ,~ (0, O, O, O, O) 

Now the proof is complete. �9 

We conclude this section with some minor results which will be needed 
in the next section. The first result, relating the strong difference of this 
section to those of Section 2, is reminiscent of Proposition 7 of Lavendhomme 
(1996, w 

Proposition 5 .Z  Let ~/l, ~/2 E T3(M; m) with "~l ]o[31 = "Y21 or31. Then 

(5.44) ~2 = ~l = (~/2 ~ ~h) -" ?l 
= (~2 ~- "~l) "- T2 
= (~2  3 ~ l )  -" T3 

where for any (dl, d2) ~ D 2, 

(5.45) ?t(dl, d2) = ~h(dl, 0, 0) = ~/2(db 0, 0) 
(5.46) ?2(dr, d2) = ~/t(0, dl, 0) = ~/2(0, dl, 0) 
(5.47) ?3(dl, d2) = ~h(0, 0, dl) = ~/2(0, 0, dO 
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Proof. Here we deal only with the first equality, leaving similar treatments 
of the other two equalities to the reader. Letfi  =fi(,q,vp: D 2 v D --~ M be 
the function such that for any (dl, d2, d3) E /)3, 

(5.48) ~/l(dt, d2, d3) =~(dl ,  d2, d3, 0) 
(5.49) ~/2(dl, d2, d3) = fi(dl, d2, d3, dld2d3) 

Then for any d e D, 

(5.50) (~2 -" "t0(d) =7(0 ,  0, 0, d)  

Let#l:  /)3 v D ~ M be the function such that for any (dl, d2, d3, d4) 
D 3 v  D, 

1 

(5.51) ~r d2, d3, d4) =~(dl ,  d2, d3, did4) 

Then it follows from (5.48) and (5.49) that for any (dl, d2, d3) e D 3, 

(5.52) ~/l(dl, d2, d3) = hl(dl, d2, d3, 0) 
(5.53) ~/2(dl, d2, d3) = ~l(dl, d2, d3, dzd3) 

Therefore for any (dl, d4) ~ D 2, 

(5.54) (~/2 ~ ~/0(dl, d4) = xel(dl, 0, 0, d4) 
= fi(dl, O, O, did4) 

Letxe2: D 2 v D ~ M be the function such that for any (dl, d4, d)  E D 2 v D, 

(5.55) xe2(d~, d4, d) = fi(d~, O, O, d) 

Then it follows from (5.54) and (5.55) that for any (dl, d4) E D 2, 

(5.56) 71(dl, d4) =h2(d~, d 4, 0) 
(5.57) (~/2 ~ ~/D(dl, d4) =,r d4, did4) 

Therefore for any d ~ D, 

(5.58) ((~/2 ~ ~1) -" ?l)(D) =,(2(0, 0, d)  
=r o, o, d) 
= (3'2-" ~ /0 (d)  �9 

Proposition 5.8. Let ot E T2(M; m) with K(ct) = (tt, t2). Then 

(5.59) ~3 / ~13 = ~(t'2) 
(5.60) ~3 ~- ~23 = ~(t'l) 

where for any (dl, dz, d3) ~ D 3 and any (el, e2) ~ D z, 

(5.61) ~3(dt, d2, d3) = ot(d~d3, d2d3) 
(5.62) tl3(dl, d2, d3) = fi(dld3) 
(5.63) ~23(dl, d2, d3) = t2(d2d3) 
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(5.64) ?t(el, e2) = a(el,  0) 
(5.65) ?2(el, e2) = or(0, el) 

Proof. Here we deal only with (5.59), leaving a similar treatment of  
(5.60) to the reader. Let/d. D 3 y D ---> M be the function such that for any 
(dl, de, d3, d4) E D 3 v D, 1 

(5.66) / (d l ,  de, d3, d4) = a(d~d3, d4) 

Then it is easy to see that for any (dl, de, d3) ~ D 3, 

(5.67) l13(dl, d2, d3) = a(dld3, 0) 
=/(dl, d2, d3, O) 

(5.68) ff3(dl, de, d3) = or(did3, d2d3) 
= ~ d l ,  d2, d3, d2d3) 

Therefore for any (dl, d4) E D e, 

(5.69) (~3 -i- rl3)(d~, d4) = / ( d , ,  0, 0, d4) 
= a ( 0 ,  ,/4) 
= (X(?e))(d4) �9 

The rest of  this section is devoted to simplicial object D[3; 1, 2]. We 
now define a kind of strong difference in S/gt3;1,2](M; m). 

Lemma 5.9. The diagram 

D(3) ~ D[3; 1, 2] 

.1 1 
D[3; l, 21 ~ D[3; 1, 21 v D(2) 

is a quasi-colimit diagram of small objects, where 

(5.70) It(di, d2, d3) = (dl, d2, d3, 0, 0) for any (dl, d2, d3) ~ D[3; 1, 2]; 
(5.71) v(dl, d2, d3) = (dl, d2, d3, did3, dzd3) for any (dl, d2, d3) ~ D[3; 

1, 21; 
(5.72) D[3; 1, 2] v D(2) = D5({(1, 2), (1, 4), (1, 5), (2, 4), (2, 5), (3, 

4), (3, 5), (4, 5)}). 

Proposition 5.10. For any ~/1, ~/2 e SDt3;1,2](M, m) with ~/l I/9(3) = "Y21D(3), 
there exists a unique function "r: D[3; 1, 2] v D(2) ~ M such that -r o ~ = 
~/1 and r o v = ~/2. In this case we define a function ~/2 -" ~/l: D(2) ---> M 
such that for any (dl, d2) E D(2), 

(5.73) (~/2 "-- ~/l)(dt, d2) = "r(0, 0, 0, dl, d2) 
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Proof. Follows from Lemma 5.9. �9 

Given "r ~ So(3)(M; m), we denote by SD[3;I,2](M; T) the subset of 
SDt3;1,2I(M; m) consisting of all ~/ ~ SD[3;1,z](M; m) with ~/I O(3) = "r. We could 
make So[3;L2}(M; x) an affine space over T~(M; m) x T t(M; m) with respect 
to the above strong difference and an appropriately defined strong translation, 
the details of which are safely left to the reader. 

By the same token as Proposition 5.7, we have the following version 
of Proposition 7 of Lavendhomme (1996, w for D[3; 1, 2]. 

Proposition 5.11. Let ~/1, ~/2 ~ St)[3;l,2](M, m) with ~/x ID(3) = "Y2ID(3) �9 Let 
tl, t2 ~ Tl(M; m) be such that tl �9 t2 = ~h -" ~/z- Then 

(5.74) 

where 

(5.75) 

(5.76) 

(5.77) 
(5.78) 
(5.79) 

tl(dl, d2, d3) = "/l(dl, 0, 0) = ~/2(dl, 0, 0) for any (dl, d2, (/3) 
D[3; 1, 3]; 

?t(dt, d2, d3) = ~/1(0, d2, 0) = ~/2(0, d2, 0) for any (dl, d2, d3) 
E D[3; 1, 3]; 
ll(dl, d3) = tl(dld3) for any (dl, d3) E D2; 
12(d2, d3) = t2(d2d3) for any (d2, d3) E /92; 

6. CURVATURE 

The following proposition on the curvature form f / i s  a quotation from 
Lavendhomme (1996, w Proposition 7) in our own terms. 

Proposition 6.1. Let ~/ e "r3(M; m), Then 

(6.1) l~(~/) = ((~/ ~- ~23"ff) ~" V('Y 1 V23'ff)) 
-- ((~/ 2 V13~/) "--- V ( ~  2 VI3~/)) 

Theorem 6.2. The simplicial form f l  is essentially tensorial. 

Proof. By Corollary 4.8 the D3-form ~ is essentially a D[3; 1, 2]-form. 
Therefore it suffices to show that for any ~/l, ~/2 E So[3j,2](M; m) with ~11 o(3) 
= ~/21D(3), we have l](~h) = 1~(~/2). Let tl, t2 ~ Tl(M; m) such that tl @ t2 
= ~/2 -" ~/l- Let (x = V(tl, t2). Let ~3 be as in (5.61). Since 

(6.2) ~3(dl, d2, 0) = a(0, 0) 
= m 

(6.3) ~3(di ,  0, d3) -- or(did3, 0) 
= tl(dld3) 
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for any (db d2, d3) ~ D 3, we have V23~3 = 713, where 713 is as in (5.62). 
Therefore ~3 ~ ~23~3 = E(?2) by Proposition 5.8, where ?2 is as in (5.65). 
This means that 

(6.4) (~3 1 ~23~3) ~" ~(~3 I V23~3) = 0 

By the same token, we have 

(6,5) (~3 ~- I~713~3) --" V(~3 2 ~713~3) = 0 

It follows from (6.4) and (6.5) that 

(6.6) fl(~3) = 0 

On the other hand, by using the notation of Proposition 5.11, we have ~31 ot3;1.21 
= (?l ~ t2) 1ot3;1.21. Therefore it follows from (6.6) and (5.74) that 

(6.7) II(((~/2 -~ ~h) T 71) T ?2) = 0 

Since 1~(71) = 1"I(72) = 0, we have 11(~/2) = [l(~h), which completes the 
proof. �9 

Theorem 6.3. Let ~/ E T3(M; m) with K(',/) = (tl, t2, t3). Then we have 

(6.8) ll(~/) = ~(12)(V(~(V(tl ,  t2)), V(t2, t3))) "-- V(V(h ,  t2), V(tt ,  t3)) 

Proof Since ~/[D(3) = ~(V(t l ,  t2), V(/I,  t3))lD(3) and the simplicial form 
II is tensorial by Theorem 6.2, we can take ~/to be V(V(fi, t2), V(fi, t3)). 
Since ~/ = V23~I, we have 

(6.9) (~ /~  V23~) -" V(~/~  V23~/) = 0 

On the other hand, since ~13~/ = No2)(V(~(V(h, t2)), V(t2, t3))), we have 
'yI Dr3] = Vt3~/1013], which implies, by dint of  Proposition 5.7, that 

(6A0) (~ ~- V~3~/) "- V(~ 7 ~3~) = "/"- V~3~/ 

The desired conclusion follows from (6.9) and (6.10). �9 

The following theorem is a version of  the celebrated Bianchi's first 
identity under the assumption that the connection V is torsion-free. 

Theorem 6.4. Let ~/ E T3(M, m) and p = (132). The connection V is 
assumed to be symmetric. Then we have 

(6.11) ll(~/) + ll(~p(~/)) + fl('Zoz('y) ) = 0 

Proof. Since the connection V is symmetric, it follows from Theorem 
6.3 that 

(6.12) ~(~/) = ~(i2)(V(~(V(tt, t2)), V(t2, t3))) 
"-- V(V(h, t2), V(h, t3)) 
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= ~Oz)(V(V(t2, q), V(t2, t3))) 
--" V(V(tb t2), V(tl, t3)) 

By replacing ~/by Ep("y) in (6.12) and noting that (123 )(12) = (13), (123 )(23) 
= (12), and (13)(23) = (132), we have 

(6.13) l~(Ep(~)) = E(12)(V(V(t3, tz), V(t3, t0)) 
--" V(V(tz, t3), V(t2, tl)) 

= ]~(123)(]~(12)(V(V(t3, t2), V(t3, tl)))) 
-" ~(123)(V(V(t2, t3), V(t2, tl))) 

= E(13)(V(V(t3, t2), V(t3, tl))) 
--" Eo23)(V(V(t2, t3), V(t2, t0))  

= E(13)(E(23)(V(V(t3, q), V(t3, t2)))) 
-" E(123)(E(z3)(V(V(t2, t0,  V(t2, t3))) 

= ]~(132)(V(V(t3, q), V(t3, t2))) 
-" E(12)(V(V(t2, tl), V(t2, t3)) 

By replacing T by 3s in (6.12) and noting that (12)(23) = (123) and 
(123) - l  = (132), we have 

(6.14) l'/(Ep2(~/)) = E(12)(V(V(fi, t3), V(tl, t2))) 
"-- V(V(t3, q), V(t3, t2)) 

= ]~(12)(]~(23)(V(V(tl, t2), V(tl, t3)))) 
-" V(V(t3, fi), V(t3, t2)) 

= E(123)(V(V(fi, t2), V(fi, t3))) 
-" V(V(t3, fi), V(t3, t2)) 

= ~32)(~(~23)(V(V(q, t2), V(tl, t3))) 
"-- ]~(132)(V(V(t3, tl), V(t3, t2))) 

= V(V(q, t2) , V(q, t3)) 
-" ~o32)(V(V(t3, fi), V(t3, t2))) 

Letting T1 = Eo2)(V(V(t2, fi), V(t2, t3))), T2 = V(V(fi, t2), V(fi, t3)), and ~/3 
= Eos2)(V(V(t3, tl), V(t3, t2))) in Theorem 5.4, we obtain the desired identity 
from (6.12)-(6.14). �9 

We recall that, given X, Y,, Z c • R(X, Y)Z is defined as follows: 

(6.15) (R(X, Y)Z)m = f l ( (Z  * Y * X)m 

Corollary 6.5. We continue to assume that the connection V is symmetric.  
For any X, Y, Z e x~(M), we have the following identity: 

(6.16) R(X, Y)Z + R(Y,, Z)X + R(Z, X)Y  = 0 

Proof Let p be the same as in the above theorem. Then it is easy to 
see that 



Theory of Microcubes 1131 

(6.17) (X * Z * Y)mID(3) = ~p((Z * Y * X)m)ID(3) 
(6.18) (Y * X * Z)mlD(3) = ~p2((Z * Y * X)m)ID(3) 

Therefore  the des i red  resul t  fo l lows f rom Theorems  6.2 and 6.4. 
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